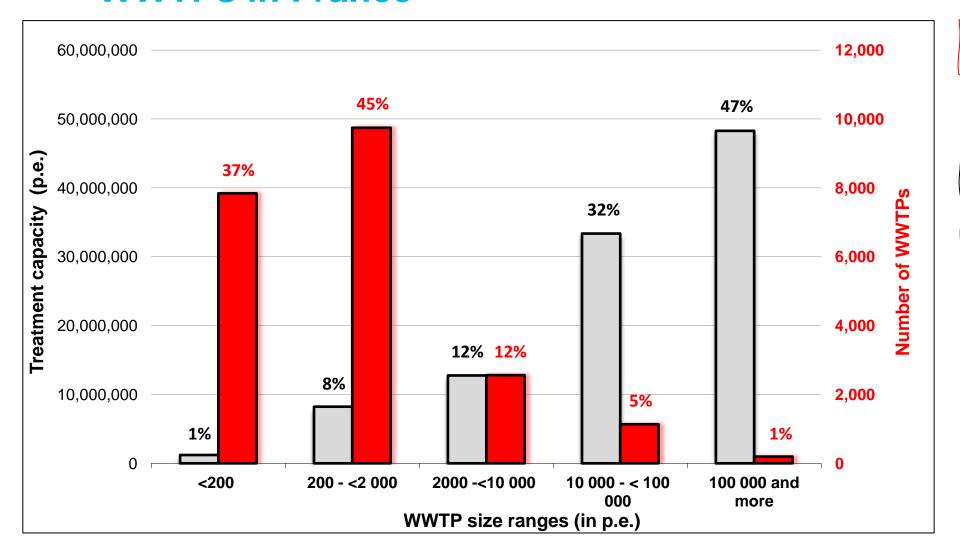


The road to sustainable sludge management The French experience

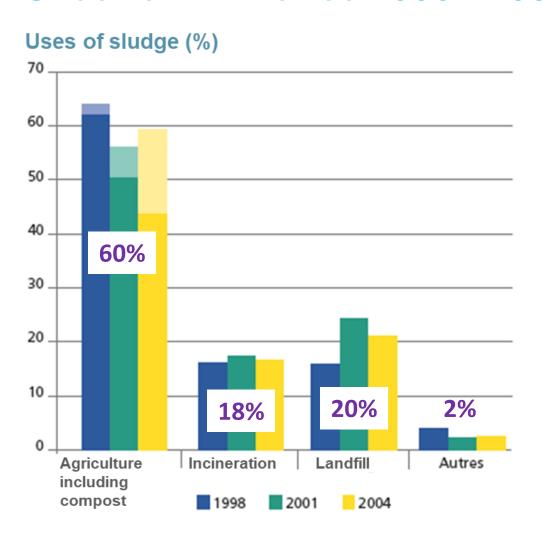
Régis Moilleron & Julien Le Roux



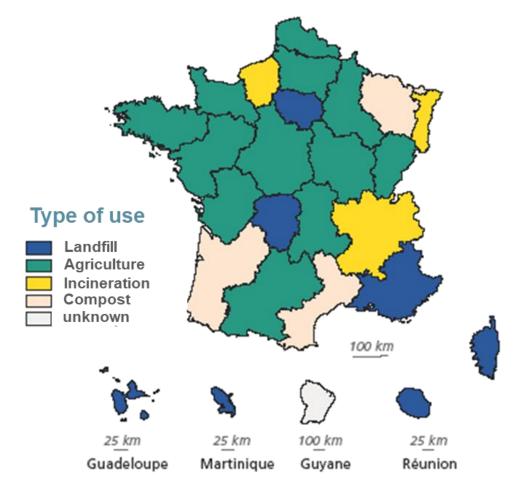
Wastewater management

WWTPs in France

≈ **22 000 WWTPs**


Treatment capacity ≈ 106 M p.e.

97% WWTPs <20 000 p.e. treatment capacity


Sludge management – evolution with time

Situation in France 1998 - 2004

Main uses of sludge in french regions (2004)

Source: Ifen-Scees, enquête Eau 2004.

Sludge management – evolution with time

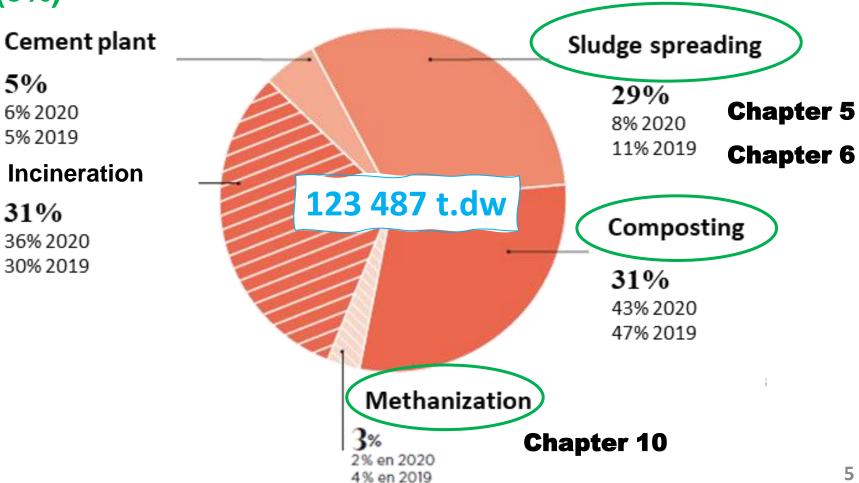


Situation in France 2022

- No more landfill (down from 20 to <1%)
- Sludge spreading increased (from 60 to 84%)
- Regulations evolved
 ✓ Circular economy

1 028 905 t.dw for France

15 kg.dw/capita


Sludge management

Situation in Paris conurbation (2022)

5%

Methanization (3%)

Why use sludge on soil or crops?

- Agronomic benefits (soil amendment or fertilizer)
- *Economic interests* (low-cost processes)
- Environmental benefits (waste recycling)

However this practice must be supervised!

... and **started to be regulated in 1998** to reassure consumer associations, who were concerned about the transfer of pollutants.

Sludge management in France - Regulation

Main regulations

European regulations

- Directive 86/278/EEC on the protection of the environment when sewage sludge is used in agriculture
- Directive 91/271/EEC concerning urban wastewater treatment (Proposal for a Directive of the European Parliament and of the Council concerning urban wastewater treatment (recast) – Provisional political agreement between the Council and the European Parliament (03/2024))

French regulations

- The Environment Code
- Decree no. 93-742 on the authorization and declaration procedures provided for in article 10 of law no. 92-3 of January 3, 1992 on water
- Decree of November 22, 1993 on the code of good agricultural practices

- Order of 08/01/98 on the technical requirements applicable to the spreading of sludge on agricultural land, in application of Decree no. 97-1133 of 08/12/97 on the spreading of sludge from wastewater treatment
- Ministerial circular of April 18, 2005, urban wastewater treatment plant sludge spreading, recommendations for monitoring compliance with regulations and informing the public
- Decree no. 2021-1179 (14/09/2021) on the composting of sewage sludge and sewage sludge digestates with structuring agents

French regulations

- Order of 08/01/98 on the technical requirements applicable to the spreading of sludge on agricultural land, in application of Decree no. 97-1133 of 08/12/97 on the spreading of sludge from wastewater treatment
- Circular DE/GE no. 357 of 16/03/99 on regulations governing the spreading of sludge from urban wastewater treatment plants
- The Environment Code (articles R 211-25 to R 211-47)

A multi-stage procedure

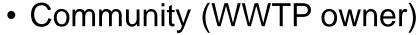
1st stage: pre-study

- carrying out a study
- ...
- choice of spreading method

2nd stage: WWTP development

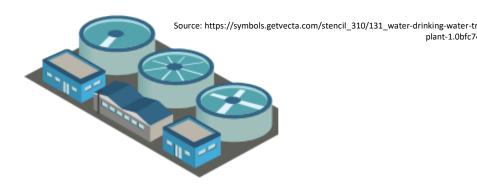
- construction of sludge storage
- construction of thickening system

3rd stage: spreading planification


- organization of spreading operations
- signature of agreements with farmers and the organization responsible for agronomic monitoring
- submission of administrative declaration or authorization file

4th stage: spreading monitoring

- land application monitoring
- agronomic and sludge quality monitoring
- annual review of sludge application campaigns and projected annual sludge application program



Stakeholders

Accredited analysis laboratory

WWTP manager

Land application monitoring service provider

- Transport supplierSpreading contractor
- Landfill contractor

Sludge characterization

List of farmers involved in spreading campaigns

Sludge spreading

Source: TSM n°3 (202) p. 19

General scheme

Specific recommendations for sludge use based on:

- A **spreading program** to define:
 - ✓ Plots & their surfaces return period between 2 sludge applications on the same plot
 - ✓ Cropping systems (before and after sludge application)
 - ✓ Other fertilizer inputs
 - √ 10 years (30 t.dw/ha of sludge)
- Soil features:
 - ✓ Agronomic value (N, P, OM, CEC, Ca, K, etc.)
 - √ Trace element contents (x7)
- Sludge characterization:
 - √ Spread quantities
 - ✓ Agronomic potential
 - ✓ Contamination by:
 - Trace metals (x7 +1)
 - PCBs (x7)
 - PAHs (x3)

Sludge characterization

Quality requirements for sludge to be spread (Order of 08/01/98)

Agronomic value	Trace metal contents	Organic micropollutants			
Dry matter (%)	• Cd 10	• Σ 7PCBs (28, 52, 101, 118, 138,			
Organic matter (%)	• Cr 1000	153, 180) 0.8			
рН	• Cu 1000				
TKN*	• Hg 10	Fluoranthene			
Organic Nitrogen*	• Ni 200	4			
NH ₄ +*	• Pb 800				
C/N	• Zn 3000	 Benzo[b]fluoranthene 2.5 			
Total Phosphorous (P ₂ O ₅)*	• Σ (Cu + Ni + Zn + Cr) 4000				
Potassium (K ₂ O)*	• Se 25	Benz[a]pyrene			
Calcium (CaO)*		1.5			
Magnesium (MgO)*					
Micronutrients:	in mg/kg.dw	in mg/kg.dw			
B, Co, Cu, Fe, Mn, Mo, Zn (in					
mg/kg.dw)	[threshold in mg/kg.dw]	[threshold in mg/kg.dw]			
* in kg/t.dw	if spread on meadow	if spread on meadow			

Soil features

- Not all soils can be amended with sewage sludge
- Features to be respected
 - Agronomic features
 - Trace metal contents

1	Trace metal contents				
Parameters	Units	Parameters	Units	Parameters	Threshold
Grain size	% or g/kg	Exch. Calcium (CaO)	g/kg	Cd	[2]
Organic matter	%	Exch. Potassium	g/kg	Cr	[150]
рН		(K ₂ O)		Cu	[100]
TKN	g/kg	Na ₂ O	g/kg	Hg	[1]
C/N				Ni	[50]
Total limestone				Pb	[100]
(CaCO ₃)	g/kg	Micronutrients		Zn	[300]
Active limestone		В	mg/kg		
(CaCO ₃)	g/kg	Со	mg/kg	in mg/kg.dw	in mg/kg.dw
CEC	cmol/kg	Cu	mg/kg		
Exch. Phosphorous		Fe	mg/kg		
(P_2O_5)	g/kg	Mn	mg/kg		/ Slice
Exch. Magnesium		Mo	mg/kg		15010
(MgO)	g/kg	Zn	mg/kg		

Cumulated flows provided to soils

Maximum cumulative flow of sludge within 10 years (Order of 08/01/98)

Trace met (maximum cumulative		Organic micropollutants (maximum cumulative flow in 1	
• Cd	0.015 g/m ²	• Σ 7PCBs (28, 52, 101, 118, 138, 153, 1	180) 1.2 mg/m ²
• Cr	1.5 g/m ²		
• Cu	1.5 g/m ²	 Fluoranthene 	7.5 mg/m ²
• Hg	$0.015 g/m^2$		6.0 mg/m ²
• Ni	0.3 g/m^2		/30
• Pb	1.5 g/m ²	 Benzo[b]fluoranthene 	4.0 mg/m ²
• Zn	4.5 g/m ²		
• $\Sigma(Cu + Ni + Zn + Cr)$	6.0 g/m ²	• Benz[a]pyrene	3.0 mg/m ²
			2.0 mg/m ²
• Se	0.12 g/m ²		Z.U mg/m
if spread on meadow		if spread on meadow	\510

Crop fertilization

- Doses of N, P₂O₅, K₂O to be applied per crop
- Depend on the type of crop (wheat, maize, barley...), the sludge quality & the expected yield
 - For N : Dose = Requirements Supplies
 - For **P** and **K** according to COMIFER (2009)

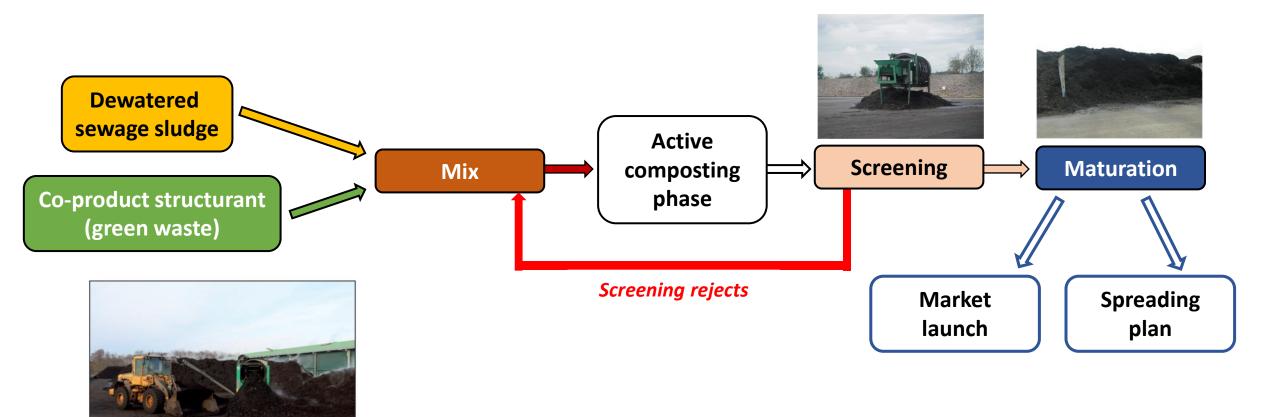
Culture	Expected yield q/ha t.dw/ha	Sludge t.RS/ha	Sludge t.dw/ha	Dose to be applied over the crop cycle		Projected dose of fertilizing elements kg/ha				Complementary inputs kg/ha					
				kg/ha 1			Total		Effectives 2			3 = 1 - 2			
				N	P ₂ O ₅	K₂O	N	P ₂ O ₅	K₂O	N	P ₂ O ₅	K₂O	N	P ₂ O ₅	K₂O
Wheat	50 q/ha	12,5	2,5	190	60	60	204	92	14	102	64	14	190-102 = 88	0	60 - 14 = 46

Methodological guides (in French)

Preliminary spreading study

Agronomic assessment of spreading

Pre-spreading program


Composting

- Sludge-based compost
 - May 2002: approval of AFNOR standard NFU 44-095 relating to composts containing materials of agronomic interest derived from water treatment
 - Improving the final quality of products
 - Greater social acceptability
 - Diversifying outlets

NF U44-095 (2022) Organic amendments - Composts containing materials of agronomic interest, derived from water treatment (French regulation)

Typical sewage sludge composting process in France

Sludge composting facility

18

Composting

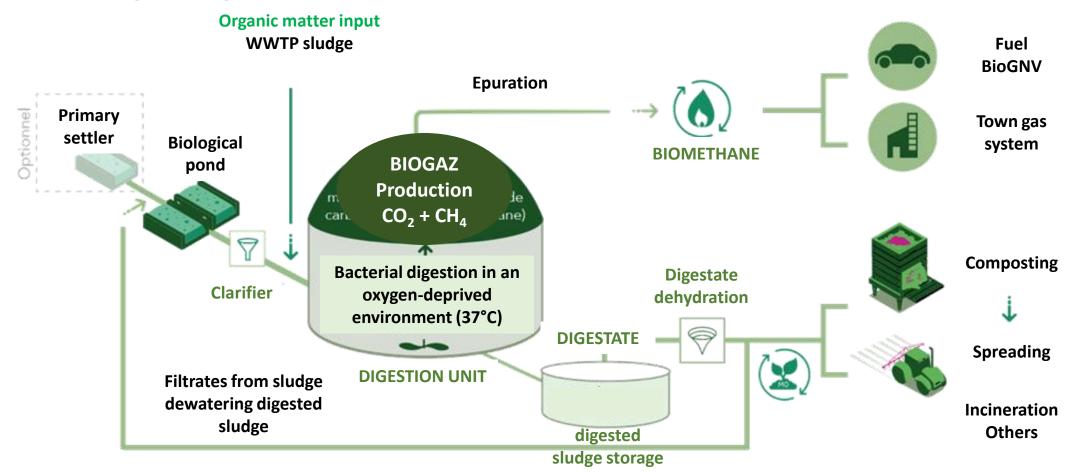
○ Sludge-based compost → vegetable gardening

Trace metal contents SLUDGE	Trace metal contents NFU 44095	Organic micropollutants SLUDGE	Organic micropollutants NFU 44095	
 Cd 10 Cr 1000 Cu 1000 Hg 10 Ni 200 Pb 800 Zn 3000 	 Cd 3 Cr 120 Cu 300 Hg 2 Ni 60 Pb 180 Zn 600 	 Σ 7PCBs 0.8 Fluo 5.0 BbF 2.5 BaP 2.0 in mg/kg.dw [threshold in mg/kg.dw] 	 Σ 7PCB 0.8 Fluo 4.0 BbF 2.5 BaP 1.5 Sludges neede neede neede (threshold in mg/kg.dw) 	election d!

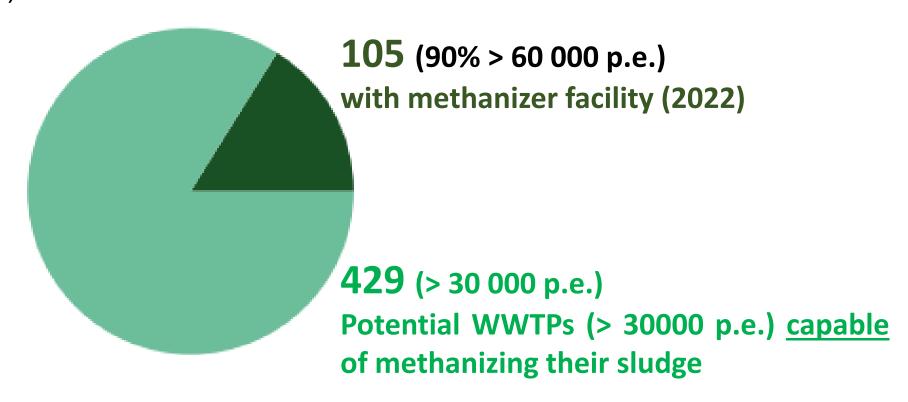
Thresholds for pathogens & treatment indicator agents (E. coli, Enterococcus, Clostridium perfringens)

Composting

- NF U44-095 requirements
 - Result requirements: on the final composition of the product, in terms of quality and safety.
 - → Plant structuring is mandatory
 - → The mixture must undergo an aerobic fermentation stage
 - Monitoring requirements: batch-by-batch traceability, from raw materials to finished products
 - Labelling requirements: composition, instructions for use



Methanization


General principle

Methanization

 In France 105 WWTPs (> 30 000 p.e.) equipped with a methanizer facility (2022)

Conclusion

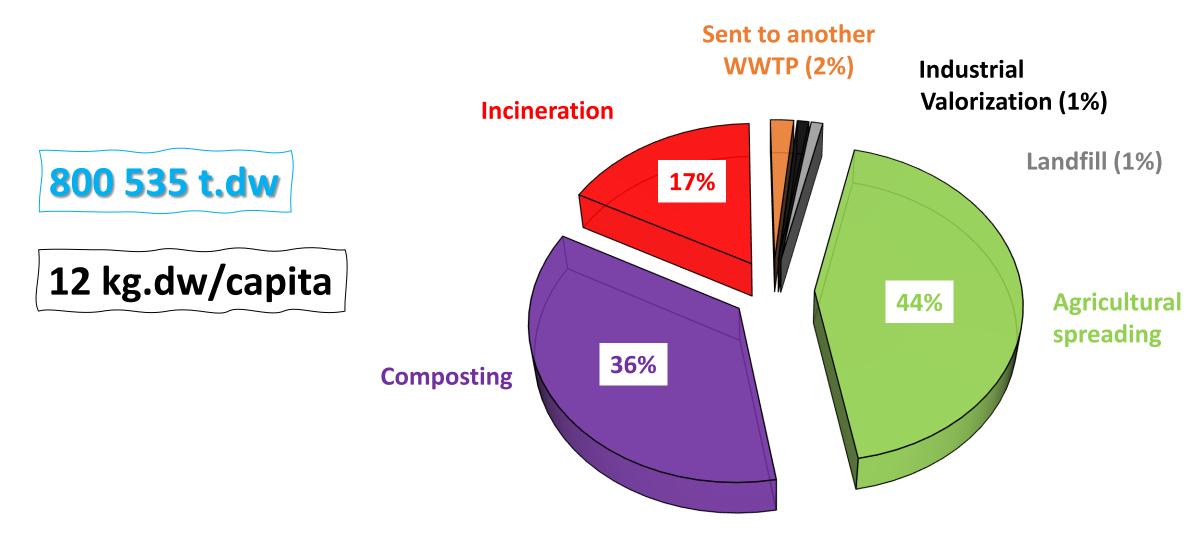
Sludge management

- A constantly evolving process
- Over the last 40 years, sludge management has evolved in line with the regulatory changes brought about by Europe and France
 - landfilling has virtually disappeared
 - compost production is expanding rapidly
 - management methods linked to a circular economy approach have been favored (e.g., methanization)
- UWW Directive recast worries WWTP managers
 - due to the introduction of new parameters for sludge characterization, such as dioxins
 - with more stringent thresholds for metals

For the Paris region, 50% of the sludge can no longer be spread (dioxins: 20 ng/kg.dw)

Thank you for your attention!

Hvala vam na pažnji! Хвала на пажњи!



Waste management in France - Figures

Sludge management (2016)

Waste management in France - Regulation

Fate of sludge

- Article 14 (Directive 91/271/EEC)
 - Sludge arising from waste water treatment shall be re-used whenever appropriate. Disposal routes shall minimize the adverse effects on the environment.
 - 2. Competent authorities or appropriate bodies shall ensure that before 31 December 1998 the disposal of *sludge from urban WWTPs* is subject to general rules *or registration or authorization*.
 - 3. Member States shall ensure that by 31 December 1998 *the disposal of sludge to surface waters* by dumping from ships, by discharge from pipelines or by other means is *phased out*.
 - 4. Until the elimination of the forms of disposal mentioned in paragraph 3, Member States shall ensure that *the total amount of toxic, persistent or bioaccumulable materials* in sludge disposed of to surface waters *is* licensed for disposal and *progressively reduced*.